| 缩写名/全名 |
COMB CHEM HIGH T SCR
COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING |
||||||||||||||||||||||||
| ISSN号 | 1386-2073 | ||||||||||||||||||||||||
| 研究方向 | 化学-生化研究方法 | ||||||||||||||||||||||||
| 影响因子 | 2015:1.041, 2016:0.952, 2017:1.205, 2018:1.503, 2019:1.195, | ||||||||||||||||||||||||
| 出版国家 | UNITED STATES | ||||||||||||||||||||||||
| 出版周期 | Bimonthly | ||||||||||||||||||||||||
| 年文章数 | 70 | ||||||||||||||||||||||||
| 出版年份 | 1998 | ||||||||||||||||||||||||
| 是否OA | No | ||||||||||||||||||||||||
| 审稿周期(仅供参考) | 较慢,6-12周 |
||||||||||||||||||||||||
| 录用比例 | 较易 | ||||||||||||||||||||||||
| 投稿链接 | http://bsp-cms.eurekaselect.com/index.php/CCHTS/login?source=%2Findex.php%2FCCHTS | ||||||||||||||||||||||||
| 投稿官网 | http://benthamscience.com/journal/index.php?journalID=cchts | ||||||||||||||||||||||||
| h-index | 59 | ||||||||||||||||||||||||
| CiteScore |
|
||||||||||||||||||||||||
| PubMed Central (PMC)链接 | http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1386-2073%5BISSN%5D | ||||||||||||||||||||||||
| 中科院SCI期刊分区 ( 2018年新版本) |
|
||||||||||||||||||||||||
| 中科院SCI期刊分区 ( 2020年新版本) |
|
| 中国学者近期发表的论文 | |
| 1. | A Rapid Python-Based Methodology for Target-Focused Combinatorial Library Design. Author: Li S, Song Y, Liu X, Li H. Journal: Comb Chem High Throughput Screen. 2016;19(1):25-35. PubMed |
| 2. | Prediction of bioactive compound pathways using chemical interaction and structural information. Author: Cheng S, Zhu C, Chu C, Huang T, Kong X, Zhu LC. Journal: Comb Chem High Throughput Screen. 2016;19(2):161-9. PubMed |
| 3. | Analysis of the relationship between PM2.5 and lung cancer based on protein-protein interactions. Author: Shu Y, Zhu L, Yuan F, Kong X, Huang T, Cai YD. Journal: Comb Chem High Throughput Screen. 2016;19(2):100-8. PubMed |
| 4. | Large-Scale Prediction of Drug Targets Based on Local and Global Consistency of Chemical-Chemical Networks. Author: Huang G, Feng K, Li X, Peng Y. Journal: Comb Chem High Throughput Screen. 2016;19(2):121-8. PubMed |
| 5. | Study of drug-drug combinations based on molecular descriptors and physicochemical properties. Author: Niu B, Xing Z, Zhao M, Huo H, Huang G, Chen F, Su Q, Lu Y, Wang M, Yang J, Chen L, Tang L, Zheng L. Journal: Comb Chem High Throughput Screen. 2016;19(2):153-60. PubMed |
| 6. | A novel machine learning method for cytokine-receptor interaction prediction. Author: Wei L, Zou Q, Liao M, Lu H, Zhao Y. Journal: Comb Chem High Throughput Screen. 2016;19(2):144-52. PubMed |
| 7. | Predicting the types of metabolic pathway of compounds using molecular fragments and sequential minimal optimization. Author: Chen L, Chu C, Feng K. Journal: Comb Chem High Throughput Screen. 2016;19(2):136-43. PubMed |
| 8. | Analysis of A Drug Target-based Classification System using Molecular Descriptors. Author: Lu J, Zhang P, Bi Y, Luo X. Journal: Comb Chem High Throughput Screen. 2016;19(2):129-35. PubMed |
| 9. | Are Topological Properties of Drug Targets Based on Protein-Protein Interaction Network Ready to Predict Potential Drug Targets? Author: Li S, Yu X, Zou C, Gong J, Liu X, Li H. Journal: Comb Chem High Throughput Screen. 2016;19(2):109-20. PubMed |
| 10. | An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening. Author: Chen H, Li S, Hu Y, Chen G, Jiang Q, Tong R, Zang Z, Cai L. Journal: Comb Chem High Throughput Screen. 2016;19(1):36-50. PubMed |
|
|